Copied to
clipboard

G = C22×D21order 168 = 23·3·7

Direct product of C22 and D21

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×D21, C62D14, C142D6, C212C23, C422C22, (C2×C6)⋊3D7, (C2×C14)⋊5S3, (C2×C42)⋊3C2, C72(C22×S3), C32(C22×D7), SmallGroup(168,56)

Series: Derived Chief Lower central Upper central

C1C21 — C22×D21
C1C7C21D21D42 — C22×D21
C21 — C22×D21
C1C22

Generators and relations for C22×D21
 G = < a,b,c,d | a2=b2=c21=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 372 in 64 conjugacy classes, 31 normal (9 characteristic)
C1, C2, C2, C3, C22, C22, S3, C6, C7, C23, D6, C2×C6, D7, C14, C21, C22×S3, D14, C2×C14, D21, C42, C22×D7, D42, C2×C42, C22×D21
Quotients: C1, C2, C22, S3, C23, D6, D7, C22×S3, D14, D21, C22×D7, D42, C22×D21

Smallest permutation representation of C22×D21
On 84 points
Generators in S84
(1 53)(2 54)(3 55)(4 56)(5 57)(6 58)(7 59)(8 60)(9 61)(10 62)(11 63)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 78)(23 79)(24 80)(25 81)(26 82)(27 83)(28 84)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)(36 71)(37 72)(38 73)(39 74)(40 75)(41 76)(42 77)
(1 34)(2 35)(3 36)(4 37)(5 38)(6 39)(7 40)(8 41)(9 42)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(21 33)(43 80)(44 81)(45 82)(46 83)(47 84)(48 64)(49 65)(50 66)(51 67)(52 68)(53 69)(54 70)(55 71)(56 72)(57 73)(58 74)(59 75)(60 76)(61 77)(62 78)(63 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 68)(2 67)(3 66)(4 65)(5 64)(6 84)(7 83)(8 82)(9 81)(10 80)(11 79)(12 78)(13 77)(14 76)(15 75)(16 74)(17 73)(18 72)(19 71)(20 70)(21 69)(22 43)(23 63)(24 62)(25 61)(26 60)(27 59)(28 58)(29 57)(30 56)(31 55)(32 54)(33 53)(34 52)(35 51)(36 50)(37 49)(38 48)(39 47)(40 46)(41 45)(42 44)

G:=sub<Sym(84)| (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,61)(10,62)(11,63)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77), (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(21,33)(43,80)(44,81)(45,82)(46,83)(47,84)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76)(61,77)(62,78)(63,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,68)(2,67)(3,66)(4,65)(5,64)(6,84)(7,83)(8,82)(9,81)(10,80)(11,79)(12,78)(13,77)(14,76)(15,75)(16,74)(17,73)(18,72)(19,71)(20,70)(21,69)(22,43)(23,63)(24,62)(25,61)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44)>;

G:=Group( (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,61)(10,62)(11,63)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,76)(42,77), (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,41)(9,42)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(21,33)(43,80)(44,81)(45,82)(46,83)(47,84)(48,64)(49,65)(50,66)(51,67)(52,68)(53,69)(54,70)(55,71)(56,72)(57,73)(58,74)(59,75)(60,76)(61,77)(62,78)(63,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,68)(2,67)(3,66)(4,65)(5,64)(6,84)(7,83)(8,82)(9,81)(10,80)(11,79)(12,78)(13,77)(14,76)(15,75)(16,74)(17,73)(18,72)(19,71)(20,70)(21,69)(22,43)(23,63)(24,62)(25,61)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44) );

G=PermutationGroup([[(1,53),(2,54),(3,55),(4,56),(5,57),(6,58),(7,59),(8,60),(9,61),(10,62),(11,63),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,78),(23,79),(24,80),(25,81),(26,82),(27,83),(28,84),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70),(36,71),(37,72),(38,73),(39,74),(40,75),(41,76),(42,77)], [(1,34),(2,35),(3,36),(4,37),(5,38),(6,39),(7,40),(8,41),(9,42),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(21,33),(43,80),(44,81),(45,82),(46,83),(47,84),(48,64),(49,65),(50,66),(51,67),(52,68),(53,69),(54,70),(55,71),(56,72),(57,73),(58,74),(59,75),(60,76),(61,77),(62,78),(63,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,68),(2,67),(3,66),(4,65),(5,64),(6,84),(7,83),(8,82),(9,81),(10,80),(11,79),(12,78),(13,77),(14,76),(15,75),(16,74),(17,73),(18,72),(19,71),(20,70),(21,69),(22,43),(23,63),(24,62),(25,61),(26,60),(27,59),(28,58),(29,57),(30,56),(31,55),(32,54),(33,53),(34,52),(35,51),(36,50),(37,49),(38,48),(39,47),(40,46),(41,45),(42,44)]])

C22×D21 is a maximal subgroup of   D42⋊C4  C2.D84  D6⋊D14  C22×S3×D7
C22×D21 is a maximal quotient of   D8411C2  D42D21  Q83D21

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 6A6B6C7A7B7C14A···14I21A···21F42A···42R
order12222222366677714···1421···2142···42
size11112121212122222222···22···22···2

48 irreducible representations

dim111222222
type+++++++++
imageC1C2C2S3D6D7D14D21D42
kernelC22×D21D42C2×C42C2×C14C14C2×C6C6C22C2
# reps1611339618

Matrix representation of C22×D21 in GL3(𝔽43) generated by

4200
0420
0042
,
100
0420
0042
,
100
02718
02539
,
100
02718
03616
G:=sub<GL(3,GF(43))| [42,0,0,0,42,0,0,0,42],[1,0,0,0,42,0,0,0,42],[1,0,0,0,27,25,0,18,39],[1,0,0,0,27,36,0,18,16] >;

C22×D21 in GAP, Magma, Sage, TeX

C_2^2\times D_{21}
% in TeX

G:=Group("C2^2xD21");
// GroupNames label

G:=SmallGroup(168,56);
// by ID

G=gap.SmallGroup(168,56);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-7,323,3604]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^21=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽